Maschinelles Lernen in der Cybersicherheit: Einsatzgebiete und Grenzen

Die an Maschinelles Lernen (ML) geknüpften Erwartungen sind hoch, und das mit gutem Grund. Algorithmen, die auf maschinellem Lernen basieren, erlauben es uns beispielsweise enorme Mengen von Sicherheitsvorkommnissen auf Anomalien hin zu sichten. [...]

Wie bei jeder anderen neuen Technologie, steht und fällt die erfolgreiche Einführung von Machine Learning in der Cybersicherheit mit der Glaubwürdigkeit ihrer Resultate. Dazu muss man ein solches Programm von Grund auf aufbauen, von einfachen, leichter zu verstehenden Verhaltensindikatoren hin zu komplexen hierarchisch strukturierten Bedrohungsmodellen, die sich auf die Kill Chain von Attacken anwenden lassen. (c) peshkova - stock.adobe.com

Die an Maschinelles Lernen (ML) geknüpften Erwartungen sind hoch, und das mit gutem Grund. Algorithmen, die auf maschinellem Lernen basieren, erlauben es uns beispielsweise enorme Mengen von Sicherheitsvorkommnissen auf Anomalien hin zu sichten. Also Abweichungen von einem als normal definierten Verhalten zu erkennen, die häufig Anzeichen für böswillige Aktivitäten sind. Die Ergebnisse dieses Sichtungsprozesses werden an einen Analysten übermittelt, der sie durchsieht und gründlich überprüft. Anschließend wird das System mit den Ergebnissen gefüttert um es weiter zu trainieren. Mit mehr und mehr in das System eingespeisten Daten entwickelt es sich sukzessive weiter: Es lernt ähnliche Sicherheitsvorkommnisse zu erkennen und letztendlich deren zugrunde liegende Charakteristika eines böswilligen Verhaltens.

Unsupervised Learning

Der erste Teil dieses Prozesses besteht im Erkennen von Anomalien, und man bezeichnet ihn als „Unsupervised Learning“. Es ist eine kostengünstige Methode, die in Maschinen-geschwindigkeit abläuft und mit der man große Datenmengen sichten kann. Sie erzeugt allerdings auch ein extrem hohes Grundrauschen. Elektronische Signale unterliegen natürlichen Schwankungen. Vor allem dann, wenn sie menschliche Aktivitäten widerspiegeln. Das führt zu gewissermaßen...

Um diese Inhalte abzurufen, registrieren Sie sich bitte für den kostenlosen Business Account.

Werbung


Mehr Artikel